## Edexcel Maths C1

Topic Questions from Papers

Quadratics

3.

$$x^2 - 8x - 29 \equiv (x+a)^2 + b,$$

where a and b are constants.

(a) Find the value of a and the value of b.

**(3)** 

(b) Hence, or otherwise, show that the roots of

$$x^2 - 8x - 29 = 0$$

are  $c \pm d\sqrt{5}$ , where c and d are integers to be found.

**(3)** 

| (~ |
|----|
|    |
|    |

| <br> | <br> |  |
|------|------|--|
|      |      |  |
|      |      |  |
|      |      |  |

**3.** On separate diagrams, sketch the graphs of

(a) 
$$y = (x+3)^2$$
,

**(3)** 

(b) 
$$y = (x + 3)^2 + k$$
, where k is a positive constant.

**(2)** 

Show on each sketch the coordinates of each point at which the graph meets the axes.

| (a) Find the value of p.                                                 | (4) |
|--------------------------------------------------------------------------|-----|
|                                                                          | (4) |
| (b) For this value of p, solve the equation $x^2 + 2px + (3p + 4) = 0$ . |     |
|                                                                          | (2) |
|                                                                          |     |
|                                                                          |     |
|                                                                          |     |
|                                                                          |     |
|                                                                          |     |
|                                                                          |     |
|                                                                          |     |
|                                                                          |     |
|                                                                          |     |
|                                                                          |     |
|                                                                          |     |
|                                                                          |     |
|                                                                          |     |
|                                                                          |     |
|                                                                          |     |
|                                                                          |     |
|                                                                          |     |
|                                                                          |     |
|                                                                          |     |
|                                                                          |     |
|                                                                          |     |
|                                                                          |     |
|                                                                          |     |
|                                                                          |     |
|                                                                          |     |
|                                                                          |     |
|                                                                          |     |
|                                                                          |     |
|                                                                          |     |

| Leave |
|-------|
| blank |

|                                          | The equation $2x^2 - 3x - (k+1) = 0$ , where k is a constant, has no real roots. |     |
|------------------------------------------|----------------------------------------------------------------------------------|-----|
| Find the set of possible values of $k$ . |                                                                                  |     |
|                                          |                                                                                  | (4) |
|                                          |                                                                                  |     |
| _                                        |                                                                                  |     |
|                                          |                                                                                  |     |
|                                          |                                                                                  |     |
|                                          |                                                                                  |     |
|                                          |                                                                                  |     |
|                                          |                                                                                  |     |
|                                          |                                                                                  |     |
|                                          |                                                                                  |     |
|                                          |                                                                                  |     |
|                                          |                                                                                  |     |
|                                          |                                                                                  |     |
|                                          |                                                                                  |     |
|                                          |                                                                                  |     |
|                                          |                                                                                  |     |
|                                          |                                                                                  |     |
|                                          |                                                                                  |     |
|                                          |                                                                                  |     |
|                                          |                                                                                  |     |
|                                          |                                                                                  |     |
|                                          |                                                                                  |     |
|                                          |                                                                                  |     |
|                                          |                                                                                  |     |
|                                          |                                                                                  |     |
|                                          |                                                                                  |     |
|                                          |                                                                                  |     |
|                                          |                                                                                  |     |
|                                          |                                                                                  |     |
|                                          |                                                                                  |     |
|                                          |                                                                                  |     |
|                                          |                                                                                  |     |
|                                          |                                                                                  |     |
|                                          |                                                                                  |     |
|                                          |                                                                                  |     |
|                                          |                                                                                  |     |

| Leave |
|-------|
| hlank |

| 7. | The equation | $x^2 + kx + (k+3) = 0,$ | where $k$ is a constant, | has different real roots. |
|----|--------------|-------------------------|--------------------------|---------------------------|
|----|--------------|-------------------------|--------------------------|---------------------------|

(a) Show that  $k^2 - 4k - 12 > 0$ .

**(2)** 

(b) Find the set of possible values of k.

**(4)** 





| 8. | The | eq | uation |
|----|-----|----|--------|
|----|-----|----|--------|

$$x^2 + kx + 8 = k$$

has no real solutions for x.

(a) Show that k satisfies  $k^2 + 4k - 32 \le 0$ .

**(3)** 

(b) Hence find the set of possible values of k.

**(4)** 

| Leave | 1 |
|-------|---|
| blank |   |
|       |   |

| 3. Given that the equation $2qx^2 + qx - 1 = 0$ , where q is a constant, he | as no real roots, |
|-----------------------------------------------------------------------------|-------------------|
| (a) show that $q^2 + 8q < 0$ .                                              | (2)               |
| (b) Hence find the set of possible values of $q$ .                          | (3)               |
|                                                                             |                   |
|                                                                             |                   |
|                                                                             |                   |
|                                                                             |                   |
|                                                                             |                   |
|                                                                             |                   |
|                                                                             |                   |
|                                                                             |                   |
|                                                                             |                   |
|                                                                             |                   |
|                                                                             |                   |
|                                                                             |                   |
|                                                                             |                   |
|                                                                             |                   |
|                                                                             |                   |
|                                                                             |                   |
|                                                                             |                   |
|                                                                             |                   |
|                                                                             |                   |
|                                                                             |                   |
|                                                                             |                   |

| 7. | The equation $kx^2 + 4x + (5 - k) = 0$ , where k is a constant, has 2 different real solutions |
|----|------------------------------------------------------------------------------------------------|
|    | for x.                                                                                         |

(a) Show that k satisfies

$$k^2 - 5k + 4 > 0$$
.

**(3)** 

| (h) | Hence | find  | the | cet | οf | possible | values | of $I$ | ŀ  |
|-----|-------|-------|-----|-----|----|----------|--------|--------|----|
| (U) | Hence | IIIIu | uie | SCL | ΟI | possible | varues | OI I   | ι. |

| (b) Hence find the set of possible values of $k$ . | (4 |
|----------------------------------------------------|----|
|                                                    |    |
|                                                    |    |
|                                                    |    |
|                                                    |    |
|                                                    |    |
|                                                    |    |
|                                                    |    |
|                                                    |    |
|                                                    |    |
|                                                    |    |
|                                                    |    |
|                                                    |    |
|                                                    |    |
|                                                    |    |
|                                                    |    |
|                                                    |    |
|                                                    |    |
|                                                    |    |
|                                                    |    |
|                                                    |    |

| Find the value of $p$ . |     |
|-------------------------|-----|
|                         | (4) |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |

| 10. | $f(x) = x^2 + 4kx + (3+11k),$ | where $k$ is a constant. |
|-----|-------------------------------|--------------------------|
|     | _(,                           |                          |

(a) Express f(x) in the form  $(x+p)^2 + q$ , where p and q are constants to be found in terms of k.

**(3)** 

Given that the equation f(x) = 0 has no real roots,

(b) find the set of possible values of k.

**(4)** 

Given that k = 1,

(c) sketch the graph of y = f(x), showing the coordinates of any point at which the graph crosses a coordinate axis.

**(3)** 

| Question 10 continued     | blank |
|---------------------------|-------|
|                           |       |
|                           |       |
|                           |       |
|                           |       |
|                           |       |
|                           |       |
|                           |       |
|                           |       |
|                           |       |
|                           |       |
|                           |       |
|                           |       |
|                           |       |
|                           |       |
|                           |       |
|                           |       |
|                           |       |
|                           |       |
|                           |       |
|                           |       |
|                           |       |
|                           |       |
|                           |       |
|                           |       |
|                           |       |
|                           |       |
|                           |       |
|                           |       |
|                           |       |
|                           | Q10   |
| (Total 10 marks)          |       |
| TOTAL FOR PAPER: 75 MARKS |       |
| END                       |       |



(a) Show that  $x^2 + 6x + 11$  can be written as

$$(x+p)^2+q$$

where p and q are integers to be found.

**(2)** 

(b) In the space at the top of page 7, sketch the curve with equation  $y = x^2 + 6x + 11$ , showing clearly any intersections with the coordinate axes.

**(2)** 

| (c) | Find the | value of | the discri | minant o | $f x^2$ | +6x+11 |
|-----|----------|----------|------------|----------|---------|--------|
|-----|----------|----------|------------|----------|---------|--------|

2)

| ` / |      |      | (2)  |
|-----|------|------|------|
|     |      |      | ` '  |
|     |      |      |      |
|     |      |      |      |
|     |      |      |      |
|     |      | <br> | <br> |
|     |      |      |      |
|     |      |      |      |
|     |      |      |      |
|     |      | <br> | <br> |
|     |      |      |      |
|     |      |      |      |
|     | <br> | <br> | <br> |
|     |      |      |      |
|     |      |      |      |
|     |      |      |      |
|     |      | <br> | <br> |
|     |      |      |      |
|     |      |      |      |
|     |      | <br> |      |
|     |      |      |      |
|     |      |      |      |
|     |      |      |      |
|     |      |      |      |
|     |      |      |      |
|     |      |      |      |
|     |      |      |      |
|     |      |      |      |
|     |      |      |      |
|     |      |      |      |
|     |      |      |      |
|     |      |      |      |
|     |      |      |      |

| Question 4 continued | Leave<br>blank |
|----------------------|----------------|
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      |                |
|                      | Q4             |
| (Total 6 marks)      |                |
|                      |                |



- 8. The equation  $x^2 + (k-3)x + (3-2k) = 0$ , where k is a constant, has two distinct real roots.
  - (a) Show that k satisfies

$$k^2 + 2k - 3 > 0$$

**(3)** 

| ( | (b) | Find    | the | set | of                        | possible | values | of $k$ |
|---|-----|---------|-----|-----|---------------------------|----------|--------|--------|
|   |     | , 11114 | uii | SCL | $\mathbf{O}_{\mathbf{I}}$ | possible | varues | OIN    |

**(4)** 

| <br> |
|------|
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |

14

| 7.         | $f(x) = x^2 + (k+3)x + k$ |
|------------|---------------------------|
| <i>i</i> • | I(x) = x + (x + 3)x + x   |

where k is a real constant.

(a) Find the discriminant of f(x) in terms of k.

**(2)** 

(b) Show that the discriminant of f(x) can be expressed in the form  $(k+a)^2 + b$ , where a and b are integers to be found.

**(2)** 

(c) Show that, for all values of k, the equation f(x) = 0 has real roots.

**(2)** 

| 9. T | ne equation | 1 |
|------|-------------|---|

 $(k+3)x^2 + 6x + k = 5$ , where k is a constant,

has two distinct real solutions for x.

(a) Show that k satisfies

$$k^2 - 2k - 24 < 0$$

**(4)** 

(b) Hence find the set of possible values of k.

(3)

22

## **Core Mathematics C1**

## Mensuration

Surface area of sphere =  $4\pi r^2$ 

Area of curved surface of cone =  $\pi r \times \text{slant height}$ 

## Arithmetic series

$$u_n = a + (n-1)d$$

$$S_n = \frac{1}{2}n(a+l) = \frac{1}{2}n[2a+(n-1)d]$$